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M. Lendl et al.: The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS
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Fig. 4. Corrected and phase-folded CHEOPS occultation light curve of WASP-189 b. Black points show the light curve binned into 20-min intervals
and the red line shows the final occultation model.

physical understanding of the source of the roll-angle-dependent
variability. We report the results of our analysis in Table 1.
Individual light curves are shown in Fig. 1, with the corrected
and phase-folded data presented in Fig. 4.

We also carried out an independent analysis using the
pycheops1 package, which is being developed specifically for
the analysis of CHEOPS data. Optimisation of the model param-
eters was done using lmfit2 and detrending done either via a
parametric method of decorrelating the data linearly against the
contamination or roll angle, and quadratically against time, or a
GP regression with a Matérn-3/2 kernel to model the flux against
roll angle trend using the celerite package (Foreman-Mackey
et al. 2017). Again, we obtained values that are fully compatible
with the reported ones.

2.3.2. Transit

At the photometric precision reached by CHEOPS, the plane-
tary transit can be seen to be asymmetric, a feature most readily
explained by the presence of gravity darkening due to the com-
bination of the host star’s fast rotation and the planet’s inclined
orbit (von Zeipel 1924; Barnes 2009). Accounting for gravity
darkening in transit models is computationally intensive and,
therefore, we performed an independent analysis of the transits
and used the results as priors for the analysis of the occultations
(see Sect. 2.3.1). We used the Transit and Light Curve Modeller
(TLCM, see Csizmadia 2020 for details) for this purpose. This
code uses the analytic expressions of Mandel & Agol (2002)
for the transit model and allows us to jointly model the transit
together with various baseline models that account for correlated
noise.

To model the gravity darkening, we compute a modification
to the analytic model taking into account the varying stellar flux
emitted along the planet’s transit path. To do so, the stellar sur-
face is divided into 120 ⇥ 120 surface elements (in longitude
and in latitude) and, for each, the surface effective temperature
is calculated via

Tlocal = T⇤

 |rV |local

|rV |pole

!0.25

. (1)

1 https://github.com/pmaxted/pycheops
2 https://lmfit.github.io/lmfit-py/

We assume a polar temperature of Tpole = 8000 K and the above
equation inherently assumes a gravity darkening exponent of 1.0,
which is appropriate for hot stars Claret et al. (2014). The local
surface gravitational potential (V) is calculated by assuming a
two-axial ellipsoidal shape of the host star and given as3
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with the mass ratio, q = Mp/M⇤, the mean motion, n, and the
astrographic latitude, b. The rotational angular velocity (!rot)
is calculated from the stellar radius, R? = 2.36± 0.030, the
⌫ sin I⇤ = 93.1± 1.7 km s�1 (see Sect. 2.2), and the fitted stel-
lar inclination. We fit two angles: the inclination of the stellar
rotational vector, I⇤, and its tilt-angle relative to celestial north
direction (⌦star = 90� � �). These two angles fully describe the
orientation of the stellar rotational axis. From the stellar and
planetary orbital geometry and the stellar deformation, we infer
the local stellar temperature behind the planetary disc. We then
convert this temperature into a fractional light loss (or gain)
compared to the nominal transit model, assuming black-body
radiation and integrating over the CHEOPS’ response function.

We fit these angles (I⇤, ⌦⇤) together with the transit shape
parameters, RP/R⇤, b, T0, the relative semi-major axis, a/R⇤, and
the linear combinations of the quadratic limb-darkening coef-
ficients, u+ = ua + ub and u� = ua � ub. We assume a circular
orbit and fix the period to that measured by Anderson et al.
(2018). The roll-angle-dependent flux variation is accounted for
through a baseline model in form of a fourth-order Fourier series
for each light curve and we allow for a constant normalisation
offset. As described in Csizmadia (2020), we first explored a
wide parameter space using a series of genetic algorithm and
simulated annealing chains, before using the best solution found
as a starting point for five independent MCMC chains of 106

steps each. The convergence was checked through the Gelman &
Rubin (1992) statistic.

We find a projected stellar obliquity of � = 86.4+2.9
�4.4
�. The

true obliquity  – the angle between the stellar rotational axis
and the orbital angular momentum vector – can be calculated
via

cos = cos I⇤ cos i + sin I⇤ sin i cos �, (3)
3 Stellar gravitational potential V = GM/R⇤ was expressed by more
easily measurable quantities via Kepler’s third law.
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Fig. 5. Top: corrected and phase-folded transit light curve of WASP-
189 b. Data from the 15 June 2020 are shown as black circles and data
from 18 June 2020 are shown as blue diamonds. The red and green
curves illustrate the best-fit models, including and excluding gravity
darkening, respectively. Bottom: data residuals related to each of the
models. Green points in the upper panel refer to residuals in the model
without gravity darkening and red points in the lower panel refer to that
with gravity darkening.

and we find a value of  = 85.4± 4.3�. Here, I⇤ and i are
the inclinations of the stellar rotational axis and the plane-
tary orbit, respectively. The projected and true obliquity values
found here are in good agreement with the findings of Anderson
et al. (2018), who reported values of � = 89.3± 1.4� and  =
90± 5.8� based on spectroscopic measurements.

We list all inferred and derived parameters in Table 1. The
full list of baseline function coefficients for transits and occul-
tations is given in Appendix B. The individual and phase-folded
transit light curves, together with the best-fit model, are shown in
Figs. 2 and 5, respectively. For the sake of comparison, we also
show a model fit obtained by assuming a spherical star with-
out gravity darkening in Fig. 5 (green curve). It is evident from
the residuals that the full model provides an improved fit for the
asymmetric transit shape.

3. Results

3.1. Revised planetary and system parameters

The new, high-precision CHEOPS observations allow us to
substantially revise the planetary parameters, and the gravity-
darkened nature of the stellar photosphere allows us to derive
an independent measurement of the projected angle between the
stellar spin and the planetary orbital axes.

The remarkable difference of our results compared to those
of Anderson et al. (2018) is that we find a ⇠25% deeper tran-
sit, which is inconsistent with their published value at the level
of 4.5�. Paired with updated stellar parameters, this corre-
sponds to a ⇠15% larger planetary radius (inconsistent at 2.9�)
and, hence, a smaller planetary mean density. We attribute this
discrepancy to the difficulties in obtaining high-precision pho-
tometry for bright stars from the ground given that the quality
of ground-based data for bright stars is limited by the paucity
of bright nearby reference stars. The photometric follow-up pre-
sented in Anderson et al. (2018) is, furthermore, limited to partial
transits, which often suffer from imprecisely determined photo-
metric trends that can bias the observed transit depth. In contrast,
neither the time trends related to stellar variability nor the roll-
angle-dependent, in-orbit variations in CHEOPS data exhibit
amplitudes that are large enough to create a transit depth offset of
the observed magnitude. Furthermore, as described in Sect. 2.1,
the CHEOPS DRS has been validated on well-known planetary
transits.

From our gravity darkening analysis, we confirm a strongly
misaligned orbit. While the analysis of the Rossiter-McLaughlin
effect by Anderson et al. (2018) yields � = 89.3 ± 1.4�, our
purely photometric analysis results in � = 86.4+2.9

�4.4
�. Assum-

ing that the star rotates more slowly than its break-up velocity,
Anderson et al. (2018) find a true obliquity of  = 90.0� ± 5.8�.
Our photometric analysis is able to provide an assumption-free
value of  = 85.4� ± 4.3.

3.2. CHEOPS occultation measurement

Based on a joint analysis of the four CHEOPS occultations,
we determined the occultation depth of WASP-189 b in the
CHEOPS passband to be 87.9± 4.3 ppm. The precision of this
measurement exceeds that of previous measurements obtained
with CoRoT (Parviainen et al. 2013), and TESS (see Wong et al.
2020, and references therein), and is comparable in precision
with the occultation depth measurements of hot Jupiters inferred
from several quarters worth of Kepler data (e.g. Angerhausen
et al. 2015; Esteves et al. 2015; Morris et al. 2013).

The individual, unbinned, occultation light curves, which
have a cadence of 33.4 s, have a residual RMS between 86
and 92 ppm. When applying binning into 10-min and 1-h inter-
vals, we reach RMS values between 34 and 47, and 10 and
17 ppm, respectively. The phase-folded and binned residuals
show an RMS of 23 and 5.7 ppm for 10-min and 1-h time bins,
respectively. These values underline the excellent performance
of CHEOPS.

Motivated by the high level of precision reached here, we
also carried out independent analyses of each occultation to
probe for any potential variation in the measured occultation
depth. The occultation is detected at high significance in each
individual light curve and the measurements are consistent at
1-� level. Thus, we find no significant sign of variability (see
Table 2) in the dayside flux from WASP-189 b over the 19-day
time span of our observations. At the same time, this illus-
trates that the value derived from a joint fit is not biased by any
individual light curve.

3.3. The atmosphere of WASP-189 b

3.3.1. Model description

To interpret the occultation depth, the radiative transfer code
HELIOS was used to calculate the spectral energy distribution
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Fig. 5. Top: corrected and phase-folded transit light curve of WASP-
189 b. Data from the 15 June 2020 are shown as black circles and data
from 18 June 2020 are shown as blue diamonds. The red and green
curves illustrate the best-fit models, including and excluding gravity
darkening, respectively. Bottom: data residuals related to each of the
models. Green points in the upper panel refer to residuals in the model
without gravity darkening and red points in the lower panel refer to that
with gravity darkening.
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90± 5.8� based on spectroscopic measurements.
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an independent measurement of the projected angle between the
stellar spin and the planetary orbital axes.

The remarkable difference of our results compared to those
of Anderson et al. (2018) is that we find a ⇠25% deeper tran-
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probe for any potential variation in the measured occultation
depth. The occultation is detected at high significance in each
individual light curve and the measurements are consistent at
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time span of our observations. At the same time, this illus-
trates that the value derived from a joint fit is not biased by any
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Gravity-darkened stellar photosphere

• Rapid rotation leads to non-negligible centrifugal 
force near the equator

• Effective surface gravity is affected:

• Effect on local temperature (e.g. Maeder 2009):

• Local brightness changes from stellar poles
to equator à gravity darkening

• Asymmetric transit light curve

è access to star-planet relative orientation:
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Figure 6. Synthetic lightcurves for transiting 1 RJup in a 0.05 AU orbit around an Altair-like star with obliquity 30◦ are plotted, similar to Figure 3, but this time with
an azimuthal angle of α = 90◦. The four curves correspond to planets with transit impact parameters of b = 0.0 Rpole (solid), b = 0.3 Rpole (dashed), b = 0.6 Rpole
(dot-dashed), and b = 0.9 Rpole (dotted). The resulting lightcurves are highly asymmetric, being deeper on the side of the lightcurve where the planet passes over the
hot northern stellar pole.
(A color version of this figure is available in the online journal.)
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Figure 7. Synthetic lightcurves for transiting 1 RJup in a 0.05 AU orbit around an Altair-like star with obliquity 30◦ are plotted, similar to Figure 3 but an azimuthal
angle of α = 60◦. The seven curves correspond to planets with transit impact parameters of b = −0.9 Rpole (thick dotted), b = −0.6 Rpole (thick dot-dashed),
b = −0.3 Rpole (thick dashed), b = 0.0 Rpole (thick solid), b = 0.3 Rpole (dashed), b = 0.6 Rpole (dot-dashed), and b = 0.9 Rpole (dotted). With this oblique azimuth,
the photometric lightcurve center does not correspond with the point where the planet is nearest to Earth. The lightcurves show a diversity of complex asymmetric
shapes as a function of the impact parameter.
(A color version of this figure is available in the online journal.)

If the transit chord azimuth is oblique, then the lightcurves
can become quite complex as shown in Figure 7. The central
b = 0.0 Rpole transit resembles those from Figure 6. The
more northerly transits (those defined to have negative impact
parameters) also show strong lightcurve asymmetries, with
deep first halves and shallowing second halves. Some of the
lightcurves turn over again near third contact, but the ones with
more negative impact parameters do not.

For positive, more southerly impact parameters, the depth
asymmetry decreases. Further from the hot pole, the temper-
atures under the transit chord are more uniform. The b =

0.9 Rpole transit is particularly interesting. It shows a nearly
uniform depth in time, but while the ingress is long and gen-
tly curving, the egress is abrupt. A higher photometric preci-
sion would be required to definitively identify such a transit
lightcurve as being one from a fast-rotating star than would
be necessary for some of the more spectacularly asymmetric
lightcurves.

With oblique azimuths also come uncentered lightcurves.
Because of the stellar oblateness, the center of these transits does
not occur at the time of the planet’s inferior conjunction, that
is, when the planet is closest to the Earth. The total discrepancy

Barnes (2009)
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where TthermFront_2 and �TthermFront_2 are the thermFront_2 tem-
perature and its deviation from its median value respectively, and
ctherm is a free parameter defining the strength of the correlation.

To account for other long-term systematic e↵ects, we in-
cluded a trend model for each observation. This model includes
a linear slope with time for each data set, plus an additional
quadratic trend for each of the eclipse observations, as shown
in the following equation:

Strend(t) = c2 (t � t0)2 + c1 (t � t0) (3)

where t is the time, t0 is the mid-time of each observation, c2 and
c1 are the quadratic and linear trend coe�cients for each obser-
vation (c2 = 0 for the phase curves). The nature of the corrected
trends is not clearly determined and could be due to imperfect
instrumental long-term stability, stellar activity or both. How-
ever, in the light of the modelling of stellar activity in the phase
curves discussed in Section 4.5, we strongly suspect that most
of the trends in the eclipse observations are of stellar origin, but
this could not be assessed given the short duration of each obser-
vations.

Based on the available housekeeping data, we performed an
extensive study on possible correlations between the photometry
and all the other parameters. We found no correlation other than
the ones mentioned before that required modelling and correc-
tion.

4.4. Planetary model

The modelling of the photometric signal from WASP-189 b
along its orbit is decomposed in three contributions that are de-
scribed below: the transit model for when the planet passes in
front of the gravity-darkened star, the eclipse model for when
the planet is hidden by the star and the phase curve model for
the flux received from the planetary surface as a function of its
position around the star.

4.4.1. Transit model with stellar gravity darkening

The fast-rotating nature of WASP-189 causes the centrifugal
force to have a non-negligible e↵ect with respect to the surface
gravity. As a consequence, the e↵ective surface gravity at the
stellar equator is smaller than the one at the poles and the star
becomes oblate. Based on the von Zeipel theorem (von Zeipel
1924), one can show that the radiative flux at a given latitude
on the rotating star is proportional to the local e↵ective surface
gravity (e.g. Maeder 2009) and this implies the following rela-
tion:

T (#) = Tpole

 
ge↵(#)
ge↵, pole

!�
(4)

where T (#) and Tpole are respectively the temperatures at a given
colatitude # and at the poles (# = 0), ge↵(#) and ge↵, pole are re-
spectively the e↵ective surface gravities at the colatitude # and
at the poles, and � is the gravity-darkening exponent. The value
of � is 0.25 for a purely radiative envelope but can deviate from
the theory as measured for the star Altair (� = 0.190 ± 0.012,
Monnier et al. 2007). The previous equation shows that, as the
stellar rotation reduces the local e↵ective gravity, the equator
gets cooler and thus appears darker than the poles. The gravity
darkening leaves a peculiar photometric signature when a planet
transits in front of its star and hides regions with varying bright-
ness, leading to asymmetric transit light curves when the orbit is
misaligned.

As shown by Lendl et al. (2020), the transit light curve
of WASP-189 b shows such gravity-darkening features and one
must account for this e↵ect in the modelling of the data. In our
analysis, we make use of pytransit3 (Parviainen 2015), ver-
sion 2.5.13, that provides gravity-darkened transit models imple-
mented based on Barnes (2009)4. The base assumption of vari-
ous equations of the code is that the gravitational potential fol-
lows a Roche model, which is equivalent to assuming that only
the outer layers of the star are distorted by rotation, meaning that
the inner layers are spherical, hence producing the same gravi-
tational potential as if the whole mass was concentrated at the
centre of the star. pytransit represents the star as a discretised
oblate sphere and computes the transit luminosity dip with a dis-
cretised planetary disc crossing and partially hiding the stellar
object projected onto the plane of the sky. The e↵ective surface
gravity ge↵ at each point on the stellar surface is evaluated from
the Newtonian gravity force and the centrifugal force following:

��!ge↵(#) = �G M?
r2
#

�!ur +

 
2⇡
P?

!2

R? sin(#) �!ux (5)

where G is the universal gravitational constant, M? is the stel-
lar mass, r# is the distance from the stellar centre of the point
considered, P? is the rotation period of the star, R? is the stel-
lar radius and # is the colatitude of the point. The unit vectors �!ur
and �!ux point outwards, in the opposite direction of the stellar cen-
tre and perpendicularly to the spin axis of the star, respectively.
The local stellar radius r# equals R? at the equator and decreases
down to Rpole = R? (1 � f?) at the poles (# = 0), where f? is
the stellar oblateness that can be expressed as a function of the
stellar parameters:

f? = 1 � Rpole

R?
=

2⇡2R3
?

2⇡2R3
? +G M?P2

?

=
3⇡

2 G ⇢?P2
?

(6)

The temperature map of the star is computed from Eq. 4 and
5 for every discretised surface point. The conversion from tem-
perature to measured flux requires two additional elements that
are the flux emission spectrum S(�,T ) for a given temperature T
and the instrument sensitivity or passband Tinst(�). pytransit
provides the option to use synthetic spectra from the PHOENIX
library (Husser et al. 2013), which are more suited than black-
body laws to approximate the emission spectra of hot stars such
as WASP-189. We compute the CHEOPS passband by combin-
ing the optical throughput of the telescope and the quantum e�-
ciency of the detector that are both available as reference files in
the CHEOPS mission archive5. The measured flux from a given
point can then be computed after including the limb-darkening
e↵ect at the considered location:

F (#, µ) =
Z +1

�=0
S(�,T (#))Tinst(�) d� ⇥ I(µ) (7)

where F (#, µ) is the local flux, � is the wavelength, # is the
colatitude of the point and µ =

p
1 � x2 with x the normalised

radial coordinate of the point. The term I(µ) represents the lo-
cal attenuation due to the limb darkening and is implemented
in pytransit with the quadratic law I(µ) = 1 � u1 (1 � µ) �
3
https://github.com/hpparvi/PyTransit

4 Note that there is a typo in Eq. 14 of Barnes (2009) and the terms
(1 � f 2) should be replaced by (1 � f )2.
5
https://cheops-archive.astro.unige.ch/archive_

browser/
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where TthermFront_2 and �TthermFront_2 are the thermFront_2 tem-
perature and its deviation from its median value respectively, and
ctherm is a free parameter defining the strength of the correlation.

To account for other long-term systematic e↵ects, we in-
cluded a trend model for each observation. This model includes
a linear slope with time for each data set, plus an additional
quadratic trend for each of the eclipse observations, as shown
in the following equation:
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where t is the time, t0 is the mid-time of each observation, c2 and
c1 are the quadratic and linear trend coe�cients for each obser-
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of the trends in the eclipse observations are of stellar origin, but
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Based on the available housekeeping data, we performed an
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scribed below: the transit model for when the planet passes in
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ge↵, pole

!�
(4)
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at the poles, and � is the gravity-darkening exponent. The value
of � is 0.25 for a purely radiative envelope but can deviate from
the theory as measured for the star Altair (� = 0.190 ± 0.012,
Monnier et al. 2007). The previous equation shows that, as the
stellar rotation reduces the local e↵ective gravity, the equator
gets cooler and thus appears darker than the poles. The gravity
darkening leaves a peculiar photometric signature when a planet
transits in front of its star and hides regions with varying bright-
ness, leading to asymmetric transit light curves when the orbit is
misaligned.

As shown by Lendl et al. (2020), the transit light curve
of WASP-189 b shows such gravity-darkening features and one
must account for this e↵ect in the modelling of the data. In our
analysis, we make use of pytransit3 (Parviainen 2015), ver-
sion 2.5.13, that provides gravity-darkened transit models imple-
mented based on Barnes (2009)4. The base assumption of vari-
ous equations of the code is that the gravitational potential fol-
lows a Roche model, which is equivalent to assuming that only
the outer layers of the star are distorted by rotation, meaning that
the inner layers are spherical, hence producing the same gravi-
tational potential as if the whole mass was concentrated at the
centre of the star. pytransit represents the star as a discretised
oblate sphere and computes the transit luminosity dip with a dis-
cretised planetary disc crossing and partially hiding the stellar
object projected onto the plane of the sky. The e↵ective surface
gravity ge↵ at each point on the stellar surface is evaluated from
the Newtonian gravity force and the centrifugal force following:

��!ge↵(#) = �G M?
r2
#

�!ur +

 
2⇡
P?

!2

R? sin(#) �!ux (5)

where G is the universal gravitational constant, M? is the stel-
lar mass, r# is the distance from the stellar centre of the point
considered, P? is the rotation period of the star, R? is the stel-
lar radius and # is the colatitude of the point. The unit vectors �!ur
and �!ux point outwards, in the opposite direction of the stellar cen-
tre and perpendicularly to the spin axis of the star, respectively.
The local stellar radius r# equals R? at the equator and decreases
down to Rpole = R? (1 � f?) at the poles (# = 0), where f? is
the stellar oblateness that can be expressed as a function of the
stellar parameters:

f? = 1 � Rpole

R?
=

2⇡2R3
?

2⇡2R3
? +G M?P2

?

=
3⇡

2 G ⇢?P2
?

(6)

The temperature map of the star is computed from Eq. 4 and
5 for every discretised surface point. The conversion from tem-
perature to measured flux requires two additional elements that
are the flux emission spectrum S(�,T ) for a given temperature T
and the instrument sensitivity or passband Tinst(�). pytransit
provides the option to use synthetic spectra from the PHOENIX
library (Husser et al. 2013), which are more suited than black-
body laws to approximate the emission spectra of hot stars such
as WASP-189. We compute the CHEOPS passband by combin-
ing the optical throughput of the telescope and the quantum e�-
ciency of the detector that are both available as reference files in
the CHEOPS mission archive5. The measured flux from a given
point can then be computed after including the limb-darkening
e↵ect at the considered location:

F (#, µ) =
Z +1

�=0
S(�,T (#))Tinst(�) d� ⇥ I(µ) (7)

where F (#, µ) is the local flux, � is the wavelength, # is the
colatitude of the point and µ =

p
1 � x2 with x the normalised

radial coordinate of the point. The term I(µ) represents the lo-
cal attenuation due to the limb darkening and is implemented
in pytransit with the quadratic law I(µ) = 1 � u1 (1 � µ) �
3
https://github.com/hpparvi/PyTransit

4 Note that there is a typo in Eq. 14 of Barnes (2009) and the terms
(1 � f 2) should be replaced by (1 � f )2.
5
https://cheops-archive.astro.unige.ch/archive_

browser/
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ues from Lendl et al. (2020), we can estimate the order of mag-
nitude of the semi-amplitude of the ellipsoidal variations:

Aell ⇡ ↵ell
Mp sin

⇣
ip
⌘

M?

✓R?
a

◆3
⇡ 10 ppm (15)

where ↵ell is a coe�cient of the order of unity and Mp is the
mass of WASP-189 b. The value we obtain by fitting CHEOPS
data is much larger than this estimation and it can be explained
by the fact that large amplitudes Aell create a signal in the second
phase curve that mimic the variability modelled by the GP in
the first phase curve. The global model has a higher likelihood
given the ability of the GP to correct for this induced signal, even
though its amplitude is not realistic. We thus decide to fix Aell to
zero to prevent this e↵ect from biasing the results of the final
analyses. The amplitude of the Doppler beaming is consistent
with zero when left free, so we remove a degree of freedom by
fixing it to zero as well. We validate this choice by computing
the expected amplitude following Esteves et al. (2013): Abeam ⇡
↵beam K/c ⇡ 1 ppm where ↵beam is of the order of unity, K is the
radial-velocity semi-amplitude and c is the speed of light.

In addition, we performed model comparison by includ-
ing Ellipsoidal variations, Doppler beaming or both phase
curve components. We compared the di↵erent best-fit mod-
els using the Bayesian Information Criterion (BIC) and the
Akaike Information Criterion (AIC). The model that min-
imises both the BIC and AIC is the one without Ellipsoidal
variations nor Doppler beaming. We report here the BIC
and AIC di↵erences with best model: �BIC = 20.5 and
�AIC = 13.1 for Ellipsoidal variations only, �BIC = 9.4 and
�AIC = 2.0 for Doppler beaming only, and �BIC = 18.0 and
�AIC = 3.2 when including both. These numbers further
validate the choice of discarding the contribution of Ellip-
soidal variations and Doppler beaming in our final model.

4.6.6. Gaussian process

The last set of prior probabilities are placed on the Gaussian
process hyper-parameters. The amplitude and damping hyper-
parameters S 0 and Q are sampled logarithmically and allowed
to vary in an interval aimed uniquely to reduce the size of the
parameter space and improve convergence speed of the MCMC
run. The undamped period of the oscillations P0 is constrained
by a normal prior determined from the oscillation peak identi-
fied in the Lomb-Scargle periodogram (see Fig. 5), which corre-
sponds to a distribution of 1.2 ± 0.2 days.

5. Results and discussion

In this section, we present the results we obtained from the anal-
yses of the data sets. We performed several fits on all avail-
able light curves obtained with either aperture or PSF photom-
etry. This represented a total of six light curves, with four aper-
ture sizes provided by the DRP and two PIPE time series ex-
tracted from sub-array images and at higher cadence from im-
agettes. The results obtained from all light curves lead to consis-
tent values for every planetary parameter. The best precision was
reached in the cases of aperture photometry with the so-called
default aperture size (aperture radius of 25 pixels) and PSF pho-
tometry on the sub-array images. Unfortunately, the gain in ca-
dence provided by the imagettes did not provide additional con-
straints on the parameter values due to a too important loss in
precision. Even though the outcomes of the default aperture pho-
tometry and PSF photometry on sub-arrays were extremely simi-

lar, we noticed a slight improvement with the latter with some of
the system properties better constrained. Therefore, we present
in this work the best outcome of our analysis obtained with the
MCMC analysis of the light curves extracted with PIPE from
the 200⇥200-pixel subarray images. The MCMC sampling of
the posterior distribution was performed using 128 chains with
burn-in phases longer than 20 000 steps to ensure convergence of
the algorithm, and sampling phases of 16 384 steps.

5.1. Planetary parameters

The values of the main parameters of our best fit are listed in
Table 3. They are related to the architecture of the planetary sys-
tem, the stellar activity or the ramp e↵ect. The other parameters
used to normalise and detrend the light curve against time and
roll angle have their best-fit values listed in Table C.1.

The system orientation is illustrated in Fig. 6, where the star
is represented at its most probable inclination and several plane-
tary orbits sampled from the posterior distribution are shown.

All the fitted planetary parameters are consistent with val-
ues obtained in Lendl et al. (2020). Note that the quantities nor-
malised by the stellar radius (k and a/R?) are di↵erent though.
This is actually due to the fact that the stellar radius used for nor-
malisation in Lendl et al. (2020) is the polar radius, while it is
the equatorial radius in our approach. Comparing absolute val-
ues of the planetary radius Rp and the semi-major axis a show
consistencies within 0.1�.

We note that the time of inferior conjunction T0 and the or-
bital period P are fully consistent with the values reported in
Anderson et al. (2018). We obtain an exquisite precision on both
parameters with less than 2 seconds for the period and an opti-
mum T0, opt at about 4 seconds.

From the fitted parameters, we derive a series of other useful
parameter values, including the eclipse depth that is the ampli-
tude of the phase curve (reflected and thermal) at superior con-
junction (! + ⌫ = 270 deg). It is important to mention that the
amplitudes of the reflected and thermal parts of the phase curve
are degenerate, especially where the hotspot o↵set is zero and the
full amplitude is the sum of both contributions. This is the case
for WASP-189 b and the degeneracy is strong, with either a high
geometric albedo Ag and a low dayside thermal flux Fday with
unconstrained �therm values, or a more constrained o↵set for low
Ag (see Fig. D.1). In order to provide reliable uncertainties on
�therm, the value reported in Table 3 is computed for Ag < 0.05,
corresponding to a fully thermal phase curve. We find no indica-
tion for a hotspot o↵set from the substellar point with the phase
curve peaking at occultation.

The true orbital obliquity  p describes the relative orienta-
tion of the planetary orbit with respect to the spin axis of the star
and we compute it with the following angular relationship (see
Fig. B.1):

 p = arccos
h
cos
⇣
ip
⌘

cos(i?) + cos
⇣
�p
⌘

sin
⇣
ip
⌘

sin(i?)
i

(16)

where ip is the orbital inclination, i? is the stellar inclination
and �p is the projected orbital obliquity. From the values of our
MCMC runs, we obtain  p = 89.6 ± 1.2 deg that is fully consis-
tent with a polar orbit.

Despite the convergence of the fit toward a well-defined sys-
tem orientation, there remains a degeneracy inherent to gravity-
darkened transit photometry. Indeed, the following four sets of
angular parameters will produce the same photometric signal:

1.
⇣
i?, ip, �p

⌘
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ABSTRACT

Context. Gas giants orbiting close to hot and massive early-type stars can reach dayside temperatures that are comparable to those of the coldest
stars. These “ultra-hot Jupiters” have atmospheres made of ions and atomic species from molecular dissociation and feature strong day-to-night
temperature gradients. Photometric observations at di↵erent orbital phases provide insights on the planet atmospheric properties.
Aims. We analyse the photometric observations of WASP-189 acquired with the instrument CHEOPS to derive constraints on the system architec-
ture and the planetary atmosphere.
Methods. We implement a light curve model suited for asymmetric transit shape caused by the gravity-darkened photosphere of the fast-rotating
host star. We also model the reflective and thermal components of the planetary flux, the e↵ect of stellar oblateness and light-travel time on
transit-eclipse timings, the stellar activity and CHEOPS systematics.
Results. From the asymmetric transit, we measure the size of the ultra-hot Jupiter WASP-189 b, Rp = 1.600+0.017

�0.016 RJ , with a precision of 1%, and
the true orbital obliquity of the planetary system  p = 89.6 ± 1.2 deg (polar orbit). We detect no significant hotspot o↵set from the phase curve
and obtain an eclipse depth �ecl = 96.5+4.5

�5.0 ppm, from which we derive an upper limit on the geometric albedo: Ag < 0.48. We also find that the
eclipse depth can only be explained by thermal emission alone in the case of extremely ine�cient energy redistribution. Finally, we attribute the
photometric variability to the stellar rotation, either through superficial inhomogeneities or resonance couplings between the convective core and
the radiative envelope.
Conclusions. Based on the derived system architecture, we predict the eclipse depth in the upcoming TESS observations to be up to ⇠ 165 ppm.
High-precision detection of the eclipse in both CHEOPS and TESS passbands might help disentangle between reflective and thermal contributions.
We also expect the right ascension of the ascending node of the orbit to precess due to the perturbations induced by the stellar quadrupole moment
J2 (oblateness).

Key words. techniques: photometric – planets and satellites: atmospheres – planets and satellites: individual: WASP-189 b

1. Introduction

Extra-solar planets exhibit a wide range of sizes, compositions,
temperatures and system architectures. Hot Jupiters are among
the most extreme of these worlds, orbiting so close to their
host star that they can reach equilibrium temperatures at their
surfaces beyond 2000 K. The proximity of the star also cre-
ates strong tidal forces causing the planet rotation and revolu-
tion periods to synchronise. Once tidally locked, the planet al-
ways has the same hemisphere facing the star and this strongly
impacts the atmospheric circulation. E↵ects of stellar irradia-
tion are further enhanced when the host is an early-type F or
A star, hotter and more massive than the Sun (e.g. Collier

? e-mail: adrien.deline@unige.ch

Cameron et al. 2010; Gaudi et al. 2017). Close-in gas giants or-
biting such stars, dubbed “ultra-hot Jupiters”, have cloud-free
daysides with temperatures commensurate with the surface of
cool stars, where most molecules are thermally dissociated and
atoms are ionised (Evans et al. 2017; Bell & Cowan 2018; Kitz-
mann et al. 2018; Parmentier et al. 2018; Lothringer et al. 2018;
Fossati et al. 2021). Partially ionised atmospheres inhibit atmo-
spheric circulation from the dayside to the nightside of the planet
(via Lorentz forces), resulting in strong temperature contrasts of
about 1000 K (Komacek & Showman 2016). Colder nightside
temperatures allow for various condensation process to occur,
as exemplified by the measurement of a di↵erent iron composi-
tion at the morning and evening twilights of the ultra-hot gas gi-
ant WASP-76b (Ehrenreich et al. 2020; Kesseli & Snellen 2021;

Article number, page 1 of 24



CHEOPS observations

13.01.22 A. Deline – CHEOPS phase curve of WASP-189 b 
CHEOPS Science Workshop VI

5

4 occultations
(reported in Lendl et al. 2020)

2 full planetary orbits
(incl. 2 transits reported in Lendl et al. 2020)



Stellar activity
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CHEOPS orbital period
Stellar rotation period (Lendl et al. 2020)
WASP-189b orbital period
Spectral window function

Phase curve #1: strong photometric variability

Phase curve #2: weak photometric variability 

è PC#1 periodicity matches stellar rotation

PC #1

PC #2

PC #1+2



Global model

• Systematic noise
• field of view rotation
• thermo-mechanical ”ramp” effect
• linear and quadratic long-term trend

• Planetary model
• Transit model with a gravity-darkened star
• Eclipse model with an oblate star
• Phase curve signal

• Stellar variability in the phase curves
• Gaussian process with quasi-periodic kernel
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Fig. 1.— Illustration of transits and occultations. Only the combined flux of the star and planet is observed. During a transit, the flux
drops because the planet blocks a fraction of the starlight. Then the flux rises as the planet’s dayside comes into view. The flux drops
again when the planet is occulted by the star.

as well align theX axis with the line of nodes; we place the
descending node of the planet’s orbit along the +X axis,
giving Ω = 180◦.
The distance between the star and planet is given by

equation (20) of the chapter by Murray and Correia:

r =
a(1− e2)

1 + e cos f
, (1)

where a is the semimajor axis of the relative orbit and f
is the true anomaly, an implicit function of time depending
on the orbital eccentricity e and period P (see Section 3 of
the chapter by Murray and Correia). This can be resolved
into Cartesian coordinates using equations (53-55) of the
chapter by Murray and Correia, with Ω = 180◦:

X = −r cos(ω + f), (2)
Y = −r sin(ω + f) cos i, (3)
Z = r sin(ω + f) sin i. (4)

If eclipses occur, they do so when rsky ≡
√
X2 + Y 2 is

a local minimum. Using equations (2-3),

rsky =
a(1 − e2)

1 + e cos f

√

1− sin2(ω + f) sin2 i. (5)

Minimizing this expression leads to lengthy algebra (Kip-
ping 2008). However, an excellent approximation that we
will use throughout this chapter is that eclipses are centered

around conjunctions, which are defined by the condition
X = 0 and may be inferior (planet in front) or superior
(star in front). This gives

ftra = +
π

2
− ω, focc = −

π

2
− ω, (6)

where here and elsewhere in this chapter, “tra” refers to
transits and “occ” to occultations. This approximation is
valid for all cases except extremely eccentric and close-in
orbits with grazing eclipses.
The impact parameter b is the sky-projected distance at

conjunction, in units of the stellar radius:

btra =
a cos i

R!

(

1− e2

1 + e sinω

)

, (7)

bocc =
a cos i

R!

(

1− e2

1− e sinω

)

. (8)

For the common case R! $ a, the planet’s path across
(or behind) the stellar disk is approximately a straight line
between the pointsX = ±R!

√
1− b2 at Y = bR!.

2.2 Probability of eclipses

Eclipses are seen only by privileged observers who view
a planet’s orbit nearly edge-on. As the planet orbits its star,
its shadow describes a cone that sweeps out a band on the
celestial sphere, as illustrated in Figure 3. A distant ob-
server within the shadow band will see transits. The open-
ing angle of the cone, Θ, satisfies the condition sinΘ =

2

Winn (2011)

© ESA/ATG



Planetary model: transit model

• Gravity-darkened oblate star modelled with pytransit* (Parviainen 2015)

• Stellar local flux:

• Stellar oblateness:
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where TthermFront_2 and �TthermFront_2 are the thermFront_2 tem-
perature and its deviation from its median value respectively, and
ctherm is a free parameter defining the strength of the correlation.

To account for other long-term systematic e↵ects, we in-
cluded a trend model for each observation. This model includes
a linear slope with time for each data set, plus an additional
quadratic trend for each of the eclipse observations, as shown
in the following equation:

Strend(t) = c2 (t � t0)2 + c1 (t � t0) (3)

where t is the time, t0 is the mid-time of each observation, c2 and
c1 are the quadratic and linear trend coe�cients for each obser-
vation (c2 = 0 for the phase curves). The nature of the corrected
trends is not clearly determined and could be due to imperfect
instrumental long-term stability, stellar activity or both. How-
ever, in the light of the modelling of stellar activity in the phase
curves discussed in Section 4.5, we strongly suspect that most
of the trends in the eclipse observations are of stellar origin, but
this could not be assessed given the short duration of each obser-
vations.

Based on the available housekeeping data, we performed an
extensive study on possible correlations between the photometry
and all the other parameters. We found no correlation other than
the ones mentioned before that required modelling and correc-
tion.

4.4. Planetary model

The modelling of the photometric signal from WASP-189 b
along its orbit is decomposed in three contributions that are de-
scribed below: the transit model for when the planet passes in
front of the gravity-darkened star, the eclipse model for when
the planet is hidden by the star and the phase curve model for
the flux received from the planetary surface as a function of its
position around the star.

4.4.1. Transit model with stellar gravity darkening

The fast-rotating nature of WASP-189 causes the centrifugal
force to have a non-negligible e↵ect with respect to the surface
gravity. As a consequence, the e↵ective surface gravity at the
stellar equator is smaller than the one at the poles and the star
becomes oblate. Based on the von Zeipel theorem (von Zeipel
1924), one can show that the radiative flux at a given latitude
on the rotating star is proportional to the local e↵ective surface
gravity (e.g. Maeder 2009) and this implies the following rela-
tion:

T (#) = Tpole

 
ge↵(#)
ge↵, pole

!�
(4)

where T (#) and Tpole are respectively the temperatures at a given
colatitude # and at the poles (# = 0), ge↵(#) and ge↵, pole are re-
spectively the e↵ective surface gravities at the colatitude # and
at the poles, and � is the gravity-darkening exponent. The value
of � is 0.25 for a purely radiative envelope but can deviate from
the theory as measured for the star Altair (� = 0.190 ± 0.012,
Monnier et al. 2007). The previous equation shows that, as the
stellar rotation reduces the local e↵ective gravity, the equator
gets cooler and thus appears darker than the poles. The gravity
darkening leaves a peculiar photometric signature when a planet
transits in front of its star and hides regions with varying bright-
ness, leading to asymmetric transit light curves when the orbit is
misaligned.

As shown by Lendl et al. (2020), the transit light curve
of WASP-189 b shows such gravity-darkening features and one
must account for this e↵ect in the modelling of the data. In our
analysis, we make use of pytransit3 (Parviainen 2015), ver-
sion 2.5.13, that provides gravity-darkened transit models imple-
mented based on Barnes (2009)4. The base assumption of vari-
ous equations of the code is that the gravitational potential fol-
lows a Roche model, which is equivalent to assuming that only
the outer layers of the star are distorted by rotation, meaning that
the inner layers are spherical, hence producing the same gravi-
tational potential as if the whole mass was concentrated at the
centre of the star. pytransit represents the star as a discretised
oblate sphere and computes the transit luminosity dip with a dis-
cretised planetary disc crossing and partially hiding the stellar
object projected onto the plane of the sky. The e↵ective surface
gravity ge↵ at each point on the stellar surface is evaluated from
the Newtonian gravity force and the centrifugal force following:

��!ge↵(#) = �G M?
r2
#

�!ur +

 
2⇡
P?

!2

R? sin(#) �!ux (5)

where G is the universal gravitational constant, M? is the stel-
lar mass, r# is the distance from the stellar centre of the point
considered, P? is the rotation period of the star, R? is the stel-
lar radius and # is the colatitude of the point. The unit vectors �!ur
and �!ux point outwards, in the opposite direction of the stellar cen-
tre and perpendicularly to the spin axis of the star, respectively.
The local stellar radius r# equals R? at the equator and decreases
down to Rpole = R? (1 � f?) at the poles (# = 0), where f? is
the stellar oblateness that can be expressed as a function of the
stellar parameters:

f? = 1 � Rpole

R?
=

2⇡2R3
?

2⇡2R3
? +G M?P2

?

=
3⇡

2 G ⇢?P2
?

(6)

The temperature map of the star is computed from Eq. 4 and
5 for every discretised surface point. The conversion from tem-
perature to measured flux requires two additional elements that
are the flux emission spectrum S(�,T ) for a given temperature T
and the instrument sensitivity or passband Tinst(�). pytransit
provides the option to use synthetic spectra from the PHOENIX
library (Husser et al. 2013), which are more suited than black-
body laws to approximate the emission spectra of hot stars such
as WASP-189. We compute the CHEOPS passband by combin-
ing the optical throughput of the telescope and the quantum e�-
ciency of the detector that are both available as reference files in
the CHEOPS mission archive5. The measured flux from a given
point can then be computed after including the limb-darkening
e↵ect at the considered location:

F (#, µ) =
Z +1

�=0
S(�,T (#))Tinst(�) d� ⇥ I(µ) (7)

where F (#, µ) is the local flux, � is the wavelength, # is the
colatitude of the point and µ =

p
1 � x2 with x the normalised

radial coordinate of the point. The term I(µ) represents the lo-
cal attenuation due to the limb darkening and is implemented
in pytransit with the quadratic law I(µ) = 1 � u1 (1 � µ) �
3
https://github.com/hpparvi/PyTransit

4 Note that there is a typo in Eq. 14 of Barnes (2009) and the terms
(1 � f 2) should be replaced by (1 � f )2.
5
https://cheops-archive.astro.unige.ch/archive_

browser/
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where TthermFront_2 and �TthermFront_2 are the thermFront_2 tem-
perature and its deviation from its median value respectively, and
ctherm is a free parameter defining the strength of the correlation.

To account for other long-term systematic e↵ects, we in-
cluded a trend model for each observation. This model includes
a linear slope with time for each data set, plus an additional
quadratic trend for each of the eclipse observations, as shown
in the following equation:

Strend(t) = c2 (t � t0)2 + c1 (t � t0) (3)

where t is the time, t0 is the mid-time of each observation, c2 and
c1 are the quadratic and linear trend coe�cients for each obser-
vation (c2 = 0 for the phase curves). The nature of the corrected
trends is not clearly determined and could be due to imperfect
instrumental long-term stability, stellar activity or both. How-
ever, in the light of the modelling of stellar activity in the phase
curves discussed in Section 4.5, we strongly suspect that most
of the trends in the eclipse observations are of stellar origin, but
this could not be assessed given the short duration of each obser-
vations.

Based on the available housekeeping data, we performed an
extensive study on possible correlations between the photometry
and all the other parameters. We found no correlation other than
the ones mentioned before that required modelling and correc-
tion.

4.4. Planetary model

The modelling of the photometric signal from WASP-189 b
along its orbit is decomposed in three contributions that are de-
scribed below: the transit model for when the planet passes in
front of the gravity-darkened star, the eclipse model for when
the planet is hidden by the star and the phase curve model for
the flux received from the planetary surface as a function of its
position around the star.

4.4.1. Transit model with stellar gravity darkening

The fast-rotating nature of WASP-189 causes the centrifugal
force to have a non-negligible e↵ect with respect to the surface
gravity. As a consequence, the e↵ective surface gravity at the
stellar equator is smaller than the one at the poles and the star
becomes oblate. Based on the von Zeipel theorem (von Zeipel
1924), one can show that the radiative flux at a given latitude
on the rotating star is proportional to the local e↵ective surface
gravity (e.g. Maeder 2009) and this implies the following rela-
tion:

T (#) = Tpole

 
ge↵(#)
ge↵, pole

!�
(4)

where T (#) and Tpole are respectively the temperatures at a given
colatitude # and at the poles (# = 0), ge↵(#) and ge↵, pole are re-
spectively the e↵ective surface gravities at the colatitude # and
at the poles, and � is the gravity-darkening exponent. The value
of � is 0.25 for a purely radiative envelope but can deviate from
the theory as measured for the star Altair (� = 0.190 ± 0.012,
Monnier et al. 2007). The previous equation shows that, as the
stellar rotation reduces the local e↵ective gravity, the equator
gets cooler and thus appears darker than the poles. The gravity
darkening leaves a peculiar photometric signature when a planet
transits in front of its star and hides regions with varying bright-
ness, leading to asymmetric transit light curves when the orbit is
misaligned.

As shown by Lendl et al. (2020), the transit light curve
of WASP-189 b shows such gravity-darkening features and one
must account for this e↵ect in the modelling of the data. In our
analysis, we make use of pytransit3 (Parviainen 2015), ver-
sion 2.5.13, that provides gravity-darkened transit models imple-
mented based on Barnes (2009)4. The base assumption of vari-
ous equations of the code is that the gravitational potential fol-
lows a Roche model, which is equivalent to assuming that only
the outer layers of the star are distorted by rotation, meaning that
the inner layers are spherical, hence producing the same gravi-
tational potential as if the whole mass was concentrated at the
centre of the star. pytransit represents the star as a discretised
oblate sphere and computes the transit luminosity dip with a dis-
cretised planetary disc crossing and partially hiding the stellar
object projected onto the plane of the sky. The e↵ective surface
gravity ge↵ at each point on the stellar surface is evaluated from
the Newtonian gravity force and the centrifugal force following:
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where G is the universal gravitational constant, M? is the stel-
lar mass, r# is the distance from the stellar centre of the point
considered, P? is the rotation period of the star, R? is the stel-
lar radius and # is the colatitude of the point. The unit vectors �!ur
and �!ux point outwards, in the opposite direction of the stellar cen-
tre and perpendicularly to the spin axis of the star, respectively.
The local stellar radius r# equals R? at the equator and decreases
down to Rpole = R? (1 � f?) at the poles (# = 0), where f? is
the stellar oblateness that can be expressed as a function of the
stellar parameters:
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The temperature map of the star is computed from Eq. 4 and
5 for every discretised surface point. The conversion from tem-
perature to measured flux requires two additional elements that
are the flux emission spectrum S(�,T ) for a given temperature T
and the instrument sensitivity or passband Tinst(�). pytransit
provides the option to use synthetic spectra from the PHOENIX
library (Husser et al. 2013), which are more suited than black-
body laws to approximate the emission spectra of hot stars such
as WASP-189. We compute the CHEOPS passband by combin-
ing the optical throughput of the telescope and the quantum e�-
ciency of the detector that are both available as reference files in
the CHEOPS mission archive5. The measured flux from a given
point can then be computed after including the limb-darkening
e↵ect at the considered location:

F (#, µ) =
Z +1

�=0
S(�,T (#))Tinst(�) d� ⇥ I(µ) (7)

where F (#, µ) is the local flux, � is the wavelength, # is the
colatitude of the point and µ =

p
1 � x2 with x the normalised

radial coordinate of the point. The term I(µ) represents the lo-
cal attenuation due to the limb darkening and is implemented
in pytransit with the quadratic law I(µ) = 1 � u1 (1 � µ) �
3
https://github.com/hpparvi/PyTransit

4 Note that there is a typo in Eq. 14 of Barnes (2009) and the terms
(1 � f 2) should be replaced by (1 � f )2.
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where TthermFront_2 and �TthermFront_2 are the thermFront_2 tem-
perature and its deviation from its median value respectively, and
ctherm is a free parameter defining the strength of the correlation.

To account for other long-term systematic e↵ects, we in-
cluded a trend model for each observation. This model includes
a linear slope with time for each data set, plus an additional
quadratic trend for each of the eclipse observations, as shown
in the following equation:

Strend(t) = c2 (t � t0)2 + c1 (t � t0) (3)

where t is the time, t0 is the mid-time of each observation, c2 and
c1 are the quadratic and linear trend coe�cients for each obser-
vation (c2 = 0 for the phase curves). The nature of the corrected
trends is not clearly determined and could be due to imperfect
instrumental long-term stability, stellar activity or both. How-
ever, in the light of the modelling of stellar activity in the phase
curves discussed in Section 4.5, we strongly suspect that most
of the trends in the eclipse observations are of stellar origin, but
this could not be assessed given the short duration of each obser-
vations.

Based on the available housekeeping data, we performed an
extensive study on possible correlations between the photometry
and all the other parameters. We found no correlation other than
the ones mentioned before that required modelling and correc-
tion.

4.4. Planetary model

The modelling of the photometric signal from WASP-189 b
along its orbit is decomposed in three contributions that are de-
scribed below: the transit model for when the planet passes in
front of the gravity-darkened star, the eclipse model for when
the planet is hidden by the star and the phase curve model for
the flux received from the planetary surface as a function of its
position around the star.

4.4.1. Transit model with stellar gravity darkening

The fast-rotating nature of WASP-189 causes the centrifugal
force to have a non-negligible e↵ect with respect to the surface
gravity. As a consequence, the e↵ective surface gravity at the
stellar equator is smaller than the one at the poles and the star
becomes oblate. Based on the von Zeipel theorem (von Zeipel
1924), one can show that the radiative flux at a given latitude
on the rotating star is proportional to the local e↵ective surface
gravity (e.g. Maeder 2009) and this implies the following rela-
tion:
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where T (#) and Tpole are respectively the temperatures at a given
colatitude # and at the poles (# = 0), ge↵(#) and ge↵, pole are re-
spectively the e↵ective surface gravities at the colatitude # and
at the poles, and � is the gravity-darkening exponent. The value
of � is 0.25 for a purely radiative envelope but can deviate from
the theory as measured for the star Altair (� = 0.190 ± 0.012,
Monnier et al. 2007). The previous equation shows that, as the
stellar rotation reduces the local e↵ective gravity, the equator
gets cooler and thus appears darker than the poles. The gravity
darkening leaves a peculiar photometric signature when a planet
transits in front of its star and hides regions with varying bright-
ness, leading to asymmetric transit light curves when the orbit is
misaligned.

As shown by Lendl et al. (2020), the transit light curve
of WASP-189 b shows such gravity-darkening features and one
must account for this e↵ect in the modelling of the data. In our
analysis, we make use of pytransit3 (Parviainen 2015), ver-
sion 2.5.13, that provides gravity-darkened transit models imple-
mented based on Barnes (2009)4. The base assumption of vari-
ous equations of the code is that the gravitational potential fol-
lows a Roche model, which is equivalent to assuming that only
the outer layers of the star are distorted by rotation, meaning that
the inner layers are spherical, hence producing the same gravi-
tational potential as if the whole mass was concentrated at the
centre of the star. pytransit represents the star as a discretised
oblate sphere and computes the transit luminosity dip with a dis-
cretised planetary disc crossing and partially hiding the stellar
object projected onto the plane of the sky. The e↵ective surface
gravity ge↵ at each point on the stellar surface is evaluated from
the Newtonian gravity force and the centrifugal force following:
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where G is the universal gravitational constant, M? is the stel-
lar mass, r# is the distance from the stellar centre of the point
considered, P? is the rotation period of the star, R? is the stel-
lar radius and # is the colatitude of the point. The unit vectors �!ur
and �!ux point outwards, in the opposite direction of the stellar cen-
tre and perpendicularly to the spin axis of the star, respectively.
The local stellar radius r# equals R? at the equator and decreases
down to Rpole = R? (1 � f?) at the poles (# = 0), where f? is
the stellar oblateness that can be expressed as a function of the
stellar parameters:
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The temperature map of the star is computed from Eq. 4 and
5 for every discretised surface point. The conversion from tem-
perature to measured flux requires two additional elements that
are the flux emission spectrum S(�,T ) for a given temperature T
and the instrument sensitivity or passband Tinst(�). pytransit
provides the option to use synthetic spectra from the PHOENIX
library (Husser et al. 2013), which are more suited than black-
body laws to approximate the emission spectra of hot stars such
as WASP-189. We compute the CHEOPS passband by combin-
ing the optical throughput of the telescope and the quantum e�-
ciency of the detector that are both available as reference files in
the CHEOPS mission archive5. The measured flux from a given
point can then be computed after including the limb-darkening
e↵ect at the considered location:

F (#, µ) =
Z +1

�=0
S(�,T (#))Tinst(�) d� ⇥ I(µ) (7)

where F (#, µ) is the local flux, � is the wavelength, # is the
colatitude of the point and µ =
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1 � x2 with x the normalised

radial coordinate of the point. The term I(µ) represents the lo-
cal attenuation due to the limb darkening and is implemented
in pytransit with the quadratic law I(µ) = 1 � u1 (1 � µ) �
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where TthermFront_2 and �TthermFront_2 are the thermFront_2 tem-
perature and its deviation from its median value respectively, and
ctherm is a free parameter defining the strength of the correlation.

To account for other long-term systematic e↵ects, we in-
cluded a trend model for each observation. This model includes
a linear slope with time for each data set, plus an additional
quadratic trend for each of the eclipse observations, as shown
in the following equation:

Strend(t) = c2 (t � t0)2 + c1 (t � t0) (3)

where t is the time, t0 is the mid-time of each observation, c2 and
c1 are the quadratic and linear trend coe�cients for each obser-
vation (c2 = 0 for the phase curves). The nature of the corrected
trends is not clearly determined and could be due to imperfect
instrumental long-term stability, stellar activity or both. How-
ever, in the light of the modelling of stellar activity in the phase
curves discussed in Section 4.5, we strongly suspect that most
of the trends in the eclipse observations are of stellar origin, but
this could not be assessed given the short duration of each obser-
vations.

Based on the available housekeeping data, we performed an
extensive study on possible correlations between the photometry
and all the other parameters. We found no correlation other than
the ones mentioned before that required modelling and correc-
tion.

4.4. Planetary model

The modelling of the photometric signal from WASP-189 b
along its orbit is decomposed in three contributions that are de-
scribed below: the transit model for when the planet passes in
front of the gravity-darkened star, the eclipse model for when
the planet is hidden by the star and the phase curve model for
the flux received from the planetary surface as a function of its
position around the star.

4.4.1. Transit model with stellar gravity darkening

The fast-rotating nature of WASP-189 causes the centrifugal
force to have a non-negligible e↵ect with respect to the surface
gravity. As a consequence, the e↵ective surface gravity at the
stellar equator is smaller than the one at the poles and the star
becomes oblate. Based on the von Zeipel theorem (von Zeipel
1924), one can show that the radiative flux at a given latitude
on the rotating star is proportional to the local e↵ective surface
gravity (e.g. Maeder 2009) and this implies the following rela-
tion:

T (#) = Tpole
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where T (#) and Tpole are respectively the temperatures at a given
colatitude # and at the poles (# = 0), ge↵(#) and ge↵, pole are re-
spectively the e↵ective surface gravities at the colatitude # and
at the poles, and � is the gravity-darkening exponent. The value
of � is 0.25 for a purely radiative envelope but can deviate from
the theory as measured for the star Altair (� = 0.190 ± 0.012,
Monnier et al. 2007). The previous equation shows that, as the
stellar rotation reduces the local e↵ective gravity, the equator
gets cooler and thus appears darker than the poles. The gravity
darkening leaves a peculiar photometric signature when a planet
transits in front of its star and hides regions with varying bright-
ness, leading to asymmetric transit light curves when the orbit is
misaligned.

As shown by Lendl et al. (2020), the transit light curve
of WASP-189 b shows such gravity-darkening features and one
must account for this e↵ect in the modelling of the data. In our
analysis, we make use of pytransit3 (Parviainen 2015), ver-
sion 2.5.13, that provides gravity-darkened transit models imple-
mented based on Barnes (2009)4. The base assumption of vari-
ous equations of the code is that the gravitational potential fol-
lows a Roche model, which is equivalent to assuming that only
the outer layers of the star are distorted by rotation, meaning that
the inner layers are spherical, hence producing the same gravi-
tational potential as if the whole mass was concentrated at the
centre of the star. pytransit represents the star as a discretised
oblate sphere and computes the transit luminosity dip with a dis-
cretised planetary disc crossing and partially hiding the stellar
object projected onto the plane of the sky. The e↵ective surface
gravity ge↵ at each point on the stellar surface is evaluated from
the Newtonian gravity force and the centrifugal force following:
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where G is the universal gravitational constant, M? is the stel-
lar mass, r# is the distance from the stellar centre of the point
considered, P? is the rotation period of the star, R? is the stel-
lar radius and # is the colatitude of the point. The unit vectors �!ur
and �!ux point outwards, in the opposite direction of the stellar cen-
tre and perpendicularly to the spin axis of the star, respectively.
The local stellar radius r# equals R? at the equator and decreases
down to Rpole = R? (1 � f?) at the poles (# = 0), where f? is
the stellar oblateness that can be expressed as a function of the
stellar parameters:
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The temperature map of the star is computed from Eq. 4 and
5 for every discretised surface point. The conversion from tem-
perature to measured flux requires two additional elements that
are the flux emission spectrum S(�,T ) for a given temperature T
and the instrument sensitivity or passband Tinst(�). pytransit
provides the option to use synthetic spectra from the PHOENIX
library (Husser et al. 2013), which are more suited than black-
body laws to approximate the emission spectra of hot stars such
as WASP-189. We compute the CHEOPS passband by combin-
ing the optical throughput of the telescope and the quantum e�-
ciency of the detector that are both available as reference files in
the CHEOPS mission archive5. The measured flux from a given
point can then be computed after including the limb-darkening
e↵ect at the considered location:

F (#, µ) =
Z +1
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S(�,T (#))Tinst(�) d� ⇥ I(µ) (7)

where F (#, µ) is the local flux, � is the wavelength, # is the
colatitude of the point and µ =
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1 � x2 with x the normalised

radial coordinate of the point. The term I(µ) represents the lo-
cal attenuation due to the limb darkening and is implemented
in pytransit with the quadratic law I(µ) = 1 � u1 (1 � µ) �
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CHEOPS passband
Limb-darkening law

Stellar SED from PHOENIX library (Husser et al. 2013)
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Accounting for stellar oblateness:
model computed

using a pytransit transit model
in front of a uniform stellar disc

Same parameters as for the transit
except the following transformation:
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Planetary model: phase curve signal

• Reflected light from a Lambertian sphere (Sobolev 1975; Charbonneau et al. 1999)

• Thermal emission:

• Ellipsoidal variations and Doppler beaming:
• options not included after BIC- and AIC-based model comparison

Light-travel time (up to 50 sec) accounted for in both eclipse and phase curve models
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Fig. 4. Eclipse models with and without accounting for the oblateness of
the host star. The parameters used in this example are the ones reported
in Lendl et al. (2020) except for the stellar rotation speed (increased by
a factor 2 to enhance the e↵ect of rotation), the projected orbital obliq-
uity (set to 40 deg) and the orbital inclination (set to 93 deg). The left
panel shows the light curves normalised by the out-of-eclipse flux for
the same system orientation with an oblate stellar disc (solid black line)
and a spherical star (orange dashed line). On the right is represented a
projected view of the system during the eclipse event. The black ellipse
and the orange dashed circle show the limb of the star in both cases
with the same colour code. The path of the planet is represented by the
straight black line and arrows, with planet to scale (small black disc).

The reflected flux component due to the isotropic reflection of
the stellar light o↵ the planetary atmosphere can be written ana-
lytically (Sobolev 1975; Charbonneau et al. 1999):

Frefl

F?
= Ag

 
Rp

a
1 + e cos(⌫)

1 � e2

!2 sin(↵) + (⇡ � ↵) cos(↵)
⇡

(8)

where F? is the stellar flux, Ag is the geometric albedo, Rp is the
planetary radius, a is the semi-major axis, e is the eccentricity, ⌫
is the true anomaly, and ↵ is the phase angle. The thermal emis-
sion flux is approximated by the following function of the phase
angle:

Ftherm =
⇣
Fday � Fnight

⌘ 1 + cos(↵therm)
2

+ Fnight (9)

where Fday and Fnight are the planetary fluxes of the dayside and
the nightside respectively, and

↵therm = arccos
h
� sin(! + ⌫ � �therm) sin

⇣
ip
⌘i

(10)

with �therm being the phase shift of the thermal emission account-
ing for hotspot o↵set. In total, our phase curve model makes use
of four parameters in addition to the ones already provided to the
transit model described in Section 4.4.1: the geometric albedo
Ag, the planet dayside and nightside fluxes and the hotspot o↵set
�therm.

In the framework of this analysis, we also used another phase
curve model with a more complex implementation. The reflec-
tive component was more generic and allowed a divergence from
a Lambertian profile as described in Heng et al. (2021). The
thermal emission of the planet was computed from 2D temper-
ature maps and integrated in the CHEOPS passband as detailed
in Morris et al. (2021). This approach involved more free pa-
rameters and provided inconclusive results: the reflective com-
ponent was consistent with a Lambertian profile and the ther-
mal map was not constrained mostly due to the strong degener-
acy between reflected light and thermal flux. We thus opted for
the model with a Lambertian reflector and a sinusoidal thermal
phase curve.

In addition to the reflective and thermal flux of the phase
curve model, we implemented the possibility to fit for the el-
lipsoidal variations (Mazeh 2008) and the Doppler beaming
(Maxted et al. 2000), both approximated by sinusoidal functions:

Fell = 2 Aell cos2(! + ⌫) sin
⇣
ip
⌘

(11)

Fbeam = Abeam cos(! + ⌫ + ⇡) sin
⇣
ip
⌘

(12)

where ⌫ is the true anomaly, ! is the argument of periastron, ip is
the orbital inclination, and Aell and Abeam are the semi-amplitudes
of the ellipsoidal variations and the Doppler beaming respec-
tively.

The combined model of the light curve including the transit
and eclipse models can be expressed as follows:

Fp = Ftra + (Frefl + Ftherm) ⇥ Fecl + Fell + Fbeam (13)

where Ftra is the gravity-darkened transit light curve, Frefl
and Ftherm are the reflected light and thermal emission from
the planet, Fecl is the normalised eclipse model, and Fell and
Fbeam represent the contributions from ellipsoidal variations and
Doppler beaming.

4.4.4. Light-travel time

The light-travel time (LTT) across the planetary system is ac-
counted for in the model used in this work. The observation
times are converted into reference times by correcting for the
light-travel time along the projected distance between the cur-
rent planet position and its position at inferior conjunction. This
choice of reference frame allows to synchronise the time of in-
ferior conjunction T0 in both time frames. For eccentric orbits,
such a correction is slow as it has to be solved numerically, but
fortunately it simplifies into an analytical formula for circular
orbits:

tref = tobs �
a
c


1 � cos

✓
2⇡

tobs � T0

P

◆�
sin

⇣
ip
⌘

(14)

where tref is the time corrected for LTT, tobs is the observation
time, a is the semi-major axis, c is the speed of light, T0 is the
time of inferior conjunction, and P and ip are the orbital period
and inclination. In this work, we always use the Eq. 14 for LTT
correction even in the cases of non-zero eccentricity as the or-
bit of WASP-189 b is expected to be close to circular (e ⇠ 0).
This approximation avoids the use of slow numerical implemen-
tation. The expected amplitude of the LTT correction is of the
order of 50 seconds, which is the light-travel time between su-
perior and inferior conjunctions. In practice, the transit, eclipse
and phase curve models (Sections 4.4.1, 4.4.2 and 4.4.3) of data
points observed at times tobs are computed using the correspond-
ing LTT-corrected times tref.

4.5. Stellar variability

In addition to the instrumental systematics and the planet-related
signal, the photometric time series feature another flux variabil-
ity that we studied carefully before including a model for it.
Fig. 5 shows the raw flux variations after the removal of outliers
(see Section 4.1) and the detrending of a linear slope, where the
variability is visible on top of the phase curve signal from the
planet. The first striking aspect is the absence of variability in
the second phase curve while its detection is unambiguous in the
first one, as revealed by the Lomb-Scargle periodograms (Lomb
1976; Scargle 1982) visible in the same Figure. In addition, the
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Fig. 4. Eclipse models with and without accounting for the oblateness of
the host star. The parameters used in this example are the ones reported
in Lendl et al. (2020) except for the stellar rotation speed (increased by
a factor 2 to enhance the e↵ect of rotation), the projected orbital obliq-
uity (set to 40 deg) and the orbital inclination (set to 93 deg). The left
panel shows the light curves normalised by the out-of-eclipse flux for
the same system orientation with an oblate stellar disc (solid black line)
and a spherical star (orange dashed line). On the right is represented a
projected view of the system during the eclipse event. The black ellipse
and the orange dashed circle show the limb of the star in both cases
with the same colour code. The path of the planet is represented by the
straight black line and arrows, with planet to scale (small black disc).

The reflected flux component due to the isotropic reflection of
the stellar light o↵ the planetary atmosphere can be written ana-
lytically (Sobolev 1975; Charbonneau et al. 1999):
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where F? is the stellar flux, Ag is the geometric albedo, Rp is the
planetary radius, a is the semi-major axis, e is the eccentricity, ⌫
is the true anomaly, and ↵ is the phase angle. The thermal emis-
sion flux is approximated by the following function of the phase
angle:

Ftherm =
⇣
Fday � Fnight

⌘ 1 + cos(↵therm)
2

+ Fnight (9)

where Fday and Fnight are the planetary fluxes of the dayside and
the nightside respectively, and

↵therm = arccos
h
� sin(! + ⌫ � �therm) sin

⇣
ip
⌘i

(10)

with �therm being the phase shift of the thermal emission account-
ing for hotspot o↵set. In total, our phase curve model makes use
of four parameters in addition to the ones already provided to the
transit model described in Section 4.4.1: the geometric albedo
Ag, the planet dayside and nightside fluxes and the hotspot o↵set
�therm.

In the framework of this analysis, we also used another phase
curve model with a more complex implementation. The reflec-
tive component was more generic and allowed a divergence from
a Lambertian profile as described in Heng et al. (2021). The
thermal emission of the planet was computed from 2D temper-
ature maps and integrated in the CHEOPS passband as detailed
in Morris et al. (2021). This approach involved more free pa-
rameters and provided inconclusive results: the reflective com-
ponent was consistent with a Lambertian profile and the ther-
mal map was not constrained mostly due to the strong degener-
acy between reflected light and thermal flux. We thus opted for
the model with a Lambertian reflector and a sinusoidal thermal
phase curve.

In addition to the reflective and thermal flux of the phase
curve model, we implemented the possibility to fit for the el-
lipsoidal variations (Mazeh 2008) and the Doppler beaming
(Maxted et al. 2000), both approximated by sinusoidal functions:

Fell = 2 Aell cos2(! + ⌫) sin
⇣
ip
⌘

(11)

Fbeam = Abeam cos(! + ⌫ + ⇡) sin
⇣
ip
⌘

(12)

where ⌫ is the true anomaly, ! is the argument of periastron, ip is
the orbital inclination, and Aell and Abeam are the semi-amplitudes
of the ellipsoidal variations and the Doppler beaming respec-
tively.

The combined model of the light curve including the transit
and eclipse models can be expressed as follows:

Fp = Ftra + (Frefl + Ftherm) ⇥ Fecl + Fell + Fbeam (13)

where Ftra is the gravity-darkened transit light curve, Frefl
and Ftherm are the reflected light and thermal emission from
the planet, Fecl is the normalised eclipse model, and Fell and
Fbeam represent the contributions from ellipsoidal variations and
Doppler beaming.

4.4.4. Light-travel time

The light-travel time (LTT) across the planetary system is ac-
counted for in the model used in this work. The observation
times are converted into reference times by correcting for the
light-travel time along the projected distance between the cur-
rent planet position and its position at inferior conjunction. This
choice of reference frame allows to synchronise the time of in-
ferior conjunction T0 in both time frames. For eccentric orbits,
such a correction is slow as it has to be solved numerically, but
fortunately it simplifies into an analytical formula for circular
orbits:

tref = tobs �
a
c


1 � cos

✓
2⇡

tobs � T0

P

◆�
sin

⇣
ip
⌘

(14)

where tref is the time corrected for LTT, tobs is the observation
time, a is the semi-major axis, c is the speed of light, T0 is the
time of inferior conjunction, and P and ip are the orbital period
and inclination. In this work, we always use the Eq. 14 for LTT
correction even in the cases of non-zero eccentricity as the or-
bit of WASP-189 b is expected to be close to circular (e ⇠ 0).
This approximation avoids the use of slow numerical implemen-
tation. The expected amplitude of the LTT correction is of the
order of 50 seconds, which is the light-travel time between su-
perior and inferior conjunctions. In practice, the transit, eclipse
and phase curve models (Sections 4.4.1, 4.4.2 and 4.4.3) of data
points observed at times tobs are computed using the correspond-
ing LTT-corrected times tref.

4.5. Stellar variability

In addition to the instrumental systematics and the planet-related
signal, the photometric time series feature another flux variabil-
ity that we studied carefully before including a model for it.
Fig. 5 shows the raw flux variations after the removal of outliers
(see Section 4.1) and the detrending of a linear slope, where the
variability is visible on top of the phase curve signal from the
planet. The first striking aspect is the absence of variability in
the second phase curve while its detection is unambiguous in the
first one, as revealed by the Lomb-Scargle periodograms (Lomb
1976; Scargle 1982) visible in the same Figure. In addition, the
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Fig. 4. Eclipse models with and without accounting for the oblateness of
the host star. The parameters used in this example are the ones reported
in Lendl et al. (2020) except for the stellar rotation speed (increased by
a factor 2 to enhance the e↵ect of rotation), the projected orbital obliq-
uity (set to 40 deg) and the orbital inclination (set to 93 deg). The left
panel shows the light curves normalised by the out-of-eclipse flux for
the same system orientation with an oblate stellar disc (solid black line)
and a spherical star (orange dashed line). On the right is represented a
projected view of the system during the eclipse event. The black ellipse
and the orange dashed circle show the limb of the star in both cases
with the same colour code. The path of the planet is represented by the
straight black line and arrows, with planet to scale (small black disc).
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Detrended phase curve
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Photometric precision
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Transit asymmetry and system architecture
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Phase curve and atmospheric properties
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Large uncertainty on the phase curve 
compared to the transit/eclipse events

No significant hotspot offset
D;,.(< = −E ± 3E°

=./0 = /.. 012.4
56.2 ;;<

Strong degeneracy between 
reflected light and

thermal emission components

Unable to measure
the nightside flux

due to stellar variability

No constraint on
heat redistribution efficiency 



Phase curve and atmospheric properties

Unable to disentangle the contributions
of reflected light and thermal emission

Search for upper/lower limits in two extreme scenarios:
1) phase curve amplitude due to reflected light only

2) phase curve amplitude due to thermal emission only
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Atmospheric properties – reflected light

!!"# =
#$
#∗
= $&

%$
&

'
⟹ $&,)*+ = 0.42 ± 0.02

-, < /. 01 (99.93% confidence)

No constraint on any deviation from a Lambertian reflector
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Atmospheric properties – thermal emission
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• Effective average temperature of the planet:

• Following Cowan & Agol (2011):

• Eclipse depth from the Tday:



Atmospheric properties – thermal emission
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Dayside Nightside



Atmospheric properties – thermal emission
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Flux in CHEOPS passband

Max. eclipse depth = 68.5 ± 1.8 ppm

Not enough to explain measured eclipse depth

Assuming a black body, Tday must be 3542±14 K
but this means AB ≈ – 0.24 for ε = 0

See Sect. 3.3 of Morris et al. (2021)
for a discussion about negative Bond albedo values

(arXiv:2110.11837)

https://arxiv.org/abs/2110.11837


Atmospheric properties – thermal emission

• Computing a synthetic emission
spectrum for the planet using
HELIOS (Malik et al. 2017, 2019)

• Pushing other parameters to the
limits (smallest and coolest star)

• Max thermal flux with AB = 0:
87.1 ± 3.1 ppm  (1.6σ consistency)

à Ag > 0.041 ± 0.026
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Stellar activity

• Convective scenario:
• stellar spots

• Radiative scenario
• inhomogeneities of unknown origin at the surface of hot stars (Trust et al. 2020)
• non-radial pulsations excited through resonance couplings between convective core and radiative envelope (Lee & Saio 2020)
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!★ = 1.198!"."$%&"."$' days

Photometric variability
matching stellar rotation

WASP-189 at the limit of
convective/radiative outer envelope

(Fossati et al. 2018)



TESS observation is coming

• Sector 51 (April/May 2022)

• Eclipse depth up to 165 ppm
• Stellar variability better characterised

• Joint analysis with CHEOPS data to help
disentangling thermal and reflective components
(assuming both instruments probe the same atmospheric layer)
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Summary

• Refined planetary parameters

• System architecture constrained
(polar orbit)

• No hotspot offset detected

• Degeneracy between reflected light and thermal emission
• Ag < 0.48
• Ag > 0.041 ± 0.026  (AB = 0)

• Stellar activity detected
• Stellar spots
• Core-envelope resonance couplings

• TESS-CHEOPS light curves to constrain thermal emission
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The	atmosphere	and	architecture
of	WASP-189	b

probed	by	its	 phase	curve

Thank	you	for	your	attention	!
Questions?
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