CHEOPS CHARACTERISING EXOPLANET SATELLITE

Discovery and characterisation of the system

A. Leleu, Y. Alibert, N. Hara, M. Hooton, T. Wilson and many others! **CHEOPS WORKSHOP VI - 2022**

UNIVERSITĖ **DE GENÈVE**

Credit ESO : L. Calcada

Many contributing authors and consortia

A. Leleu^{*1,2}, Y. Alibert², N. C. Hara^{*1}, M. J. Hooton², T. G. Wilson³, P. Robutel⁴, J.-B. Delisle¹, J. Laskar⁴, S. Hoyer⁵, C. Lovis¹, E. M. Bryant^{6,7}, E. Ducrot⁸, J. Cabrera⁹, L. Delrez^{8,10,1}, J. S. Acton¹¹, V. Adibekyan^{12,13,14}, R. Allart¹, C. Allende Prieto^{15,16}, R. Alonso^{15,17}, D. Alves¹⁸, D. R. Anderson^{6,7}, D. Angerhausen¹⁹, G. Anglada Escudé^{20,21}, J. Asquier²², D. Barrado²³, S. C. C. Barros^{12,14}, W. Baumjohann²⁴, D. Bayliss^{6,7}, M. Beck¹, T. Beck², A. Bekkelien¹, W. Benz^{2,25}, N. Billot¹, A. Bonfanti²⁴, X. Bonfils²⁶, F. Bouchy¹, V. Bourrier¹, G. Boué⁴, A. Brandeker²⁷, C. Broeg^{2,25}, M. Buder²⁸, A. Burdanov^{8,29}, M. R. Burleigh¹¹, T. Bárczy³⁰, A. C. Cameron³, S. Chamberlain¹¹, S. Charnoz³¹, B. F. Cooke^{6,7}, C. Corral Van Damme²², A. C. M. Correia^{32,4}, S. Cristiani³³, M. Damasso³⁴, M. B. Davies³⁵, M. Deleuil⁵, O. D. S. Demangeon^{12,14}, B.-O. Demory²⁵, P. Di Marcantonio³³, G. Di Persio³⁶, X. Dumusque¹, D. Ehrenreich¹, A. Erikson⁹, P. Figueira^{12,37}, A. Fortier^{2,25}, L. Fossati²⁴, M. Fridlund^{38,39}, D. Futyan¹, D. Gandolfi⁴⁰, A. García Muñoz⁴¹, L. J. Garcia⁸, S. Gill^{6,7}, E. Gillen^{**42,43}, M. Gillon⁸, M. R. Goad¹¹, J.I. González Hernández^{15,17}, M. Guedel⁴⁴, M. N. Günther^{***45}, J. Haldemann², B. Henderson¹¹, K. Heng²⁵, A. E. Hogan¹¹, K. Isaak²², E. Jehin¹⁰, J. S. Jenkins^{46,47}, A. Jordán^{48,49}, L. Kiss⁵⁰, M. H. Kristiansen^{51,52}, K. Lam⁹, B. Lavie¹, A. Lecavelier des Etangs⁵³, M. Lendl¹, J. Lillo-Box²³, G. Lo Curto³⁷, D. Magrin⁵⁴, C. J. A. P. Martins^{12,13}, P. F. L. Maxted⁵⁵, J. McCormac⁵⁶, A. Mehner³⁷, G. Micela⁵⁷, P. Molaro^{33,58}, M. Moyano⁵⁹, C. A. Murray⁴³, V. Nascimbeni⁵⁴, N. J. Nunes⁶⁰, G. Olofsson²⁷, H. P. Osborn^{25,45}, M. Oshagh^{15,17}, R. Ottensamer⁶¹, I. Pagano⁶², E. Pallé^{15,17}, P. P. Pedersen⁴³, F. A. Pepe¹, C.M. Persson³⁹, G. Peter²⁸, G. Piotto^{54,63}, G. Polenta⁶⁴, D. Pollacco⁶⁵, E. Poretti^{66,67}, F. J. Pozuelos^{8,10}, D. Queloz^{1,43}, R. Ragazzoni⁵⁴, N. Rando²², F. Ratti²², H. Rauer^{9,41,68}, L. Raynard¹¹, R. Rebolo^{15,17}, C. Reimers⁶¹, I. Ribas^{20,21}, N. C. Santos^{12,14}, G. Scandariato⁶², J. Schneider⁶⁹, D. Sebastian⁷⁰, M. Sestovic²⁵, A. E. Simon², A. M. S. Smith⁹, S. G. Sousa¹², A. Sozzetti³⁴, M. Steller²⁴, A. Suárez Mascareño^{15,17}, Gy. M. Szabó^{71,72}, D. Ségransan¹, N. Thomas², S. Thompson⁴³, R. H. Tilbrook¹¹, A. Triaud⁷⁰, O. Turner¹, S. Udry¹, V. Van Grootel¹⁰, H. Venus²⁸, F. Verrecchia^{64,73}, J. I. Vines¹⁸, N. A. Walton⁷⁴, R. G. West^{6,7}, P. J. Wheatley^{6,7}, D. Wolter⁹ and M. R. Zapatero Osorio⁷⁵

Search for habitable Planets EClipsing ULtra-cOOl Stars

NGTS

TESS pipeline's solution for TOI-178 - TESS sector 2 Identical solution favoured in Leleu (2019+)

Trojan exoplanets?

Parameter	Value	
$m_0 (M_{\rm sun})$	0.643 ± 0.075	
$R_0 (R_{\rm sun})$	0.70 ± 0.15	
I	Planet 1 (TOI-178.02)	
P_1 (day)	10.3542 ± 0.0032	
T_1 (BTJD)	1354.5522 ± 0.0041	
$R_1 (R_e)$	3.7 ± 1.5	
J	Planet 2 (TOI-178.03)	
P_2 (day)	9.9559 ± 0.0051	
T_2 (BTJD)	1362.9533 ± 0.0035	
$R_2(R_e)$	2.3 ± 2.7	
]	Planet 3 (TOI-178.01)	
P_3 (day)	6.5581 ± 0.0013	
T_3 (BTJD)	1360.2423 ± 0.0024	
$R_3 (R_e)$	2.8 ± 1.1	

TOI-178 in Spring 2020

Close to a 2:1/3:2/1:1/3:2 resonant chain

Period [d]	Mass[Mearth] (ESPRESSO)	Radius[Rearth] (TESS)	
1.91?			+ ESPRES
3.24	4.2	1.6	
6.55	3.7	2.7	low
10.18 (10.3 TESS instantaneous)	16.4	2.67	density? TESS +
10.18 (9.96 TESS instantaneous)	13.7	2.32	ESPRESS Only in
15.28 ?	8.38	-	ESPRESS
~43.6 ?	9.6	_	residuals

NGTS

Best fit (TESS+ESPRESSO) solution

CHEOPS - August 2020 11d visit

CHEOPS - August 2020

TESS sector 2

BJD - 2458354

Chain of Laplace resonances

- Orbital periods of 1.9d, 3.23d, 6.55d, 9.9d and 20.7d
- Laplace relation : $(k + q)/P_{mid} = k/P_{in} + q/P_{out}$
- 18:9:6:3 resonant chain

Additional planet in the resonant chain?

BLS on the TESS+NGTS+CHEOPS residuals

BLS shows peaks at ~12.9d and ~15.23d With predicted transits uncertainties of ~1 day due to a 2 year error propagation

Laplace resonance : $(k + q)/P_{mid} = k/P_{9.9} + q/P_{20.7}$ Yield two possible periods: P = 13.4527 d, or P = 15.2318 d

Observation planed the 3rd of October 2020

Confirmation of the 15.23d planet by CHEOPS

Predicted period of 15.2318 d, confirmed period of 15.231915d +/- 0.0001

Follow-up effort required to solve the architecture

Co-orbital candidates (Leleu+ 2019)

SPECULOOS Search for habitable Planets EClipsing ULtra-cOOl Stars

Systems with chain of Laplace resonances

Using CHEOPS to refine radii Leleu et al (2021)

D	
np	$\Delta n_{\rm p}$
(R_{\oplus})	(%)
$1.152^{+0.073}_{-0.070}$	6.1
$1.669^{+0.114}_{-0.099}$	5.9
$2.572^{+0.075}_{-0.078}$	2.9
$2.207\substack{+0.088\\-0.090}$	4.0
$2.287^{+0.108}_{-0.110}$	4.7
$2.870^{+0.140}_{-0.130}$	4.5
	$\frac{R_{\rm p}}{(\rm R_{\oplus})}$ $1.152^{+0.073}_{-0.070}$ $1.669^{+0.114}_{-0.099}$ $2.572^{+0.075}_{-0.078}$ $2.207^{+0.088}_{-0.0790}$ $2.287^{+0.108}_{-0.110}$ $2.870^{+0.140}_{-0.130}$

Using ESPRESSO to estimate masses Leleu et al (2021)

Combining the CHEOPS+TESS radii with ESPRESSO masses show large density variations Leleu et al (2021)

Chain of resonances as witness of the early stages of planet formation.

Formation of long resonant chains

Capture in 2-body MMRs

 $(k+q)/P_{out} = k/P_{in}$

Laplace resonant chain - a fragile configuration

Stability indicator

Planet f (15.2d) of TOI178 Leleu et al (2021)

TOI178 - A very flat system

Similar result for Trappist-1 (Agol+ 2021)

Density repartition in the systems comparaison to other systems in Laplace resonant chain

Large density variations comparaison to other systems in Laplace resonant chain

Large density variations at odds with the fragile ordered architecture.

Selected for JWST GO Cycle 1 observations of TOI178 b, d and g; PI: Hooton

The resonant architecture of TOI-178

Transit Timing Variations - TOI178

shift due to planet-planet interactions

Kepler-223 (Mills+ 2016)

Table 1 | Kepler-223 system parameters

Parameter name	DEMCMC result			
Spectroscopic stellar mass, M_{\star} (M_{\odot})	$1.125^{+0.094}_{-0.073}$			
Stellar radius, R_{\star} (R_{\odot})	$1.72^{+0.07}_{-0.14}$			
	Kepler-223 b	Kepler-223 c	Kepler-223 d	Kepler-223 e
Orbital period, P (d)	$7.38449\substack{+0.00022\\-0.00022}$	$9.84564\substack{+0.00052\\-0.00051}$	$14.78869^{+0.00030}_{-0.00027}$	$19.72567\substack{+0.00055\\-0.00054}$
Eccentricity, e	$0.078\substack{+0.015\\-0.017}$	$0.150\substack{+0.019\\-0.051}$	0.037 ^{+0.018} _{-0.017}	$0.051\substack{+0.019\\-0.019}$
Inclination, <i>i</i> –90 (°)	$0.0^{+1.8}$	0.0 ^{+1.3}	$2.06\substack{+0.26 \\ -0.32}$	$2.00^{+0.21}_{-0.27}$
Mass, $M(M_{\oplus})$	$7.4^{+1.3}_{-1.1}$	$5.1^{+1.7}_{-1.1}$	$8.0^{+1.5}_{-1.3}$	$4.8^{+1.4}_{-1.2}$
Radius, $R(R_{\oplus})$	$2.99_{-0.27}^{+0.18}$	$3.44\substack{+0.20\\-0.30}$	$5.24\substack{+0.26 \\ -0.45}$	$4.60\substack{+0.27\\-0.41}$
Density, $ ho$ (g cm ⁻³)	$1.54\substack{+0.63\\-0.35}$	$0.71^{+0.33}_{-0.20}$	$0.31\substack{+0.12\\-0.07}$	$0.28^{+0.12}_{-0.08}$

Laplace angles - Kepler-223 (Mills+ 2016)

Mean Longitude : $\lambda_j = \lambda_{j,0} + t \frac{2\pi}{P_j}$

Laplace Relation : $(k+q)/P \mod \sim k/P \inf + q/P \operatorname{out}$ **Laplace Angles :** $\Psi_i = p\lambda_i - (p+q)\lambda_{i+1} + q\lambda_{i+2}$

6 possible equilibria (Delisle 2017)

Capture order - Kepler-223 (Delisle 2017)

Laplace Angles : $\Psi_i = p\lambda_i - (p+q)\lambda_{i+1} + q\lambda_{i+2}$

Equilibrium probability: 4%

Equilibrium probability: 52%

Formation of long resonant chains - Kepler-80 (MacDonald+ 2016)

DISC PHASE

During tidal phase, the pairs move away from 2-body MMRs

 $(k+q)/P_{OUT} = k/P_{in}$

But the 3-body MMRs (Laplace) hold $(k+q)/P_{mid} = k/P_{in} + q/P_{out}$

Amplitude of resonant angles, eccentricities, and tides

- Trappist-1 (Agol+ 2021)
 - All planets in the chain.
 - Surprising period ratios (Pc/Pb~8/5).

 $\Psi_i = p\lambda_i - (p+q)\lambda_{i+1} + q\lambda_{i+2}$

- TOI-178 (Leleu+ 2021)
 - Inner planet out of the chain.
 - Larger libration of the inner resonance. \bullet

Minute architecture differences constrain the formation and evolution of resonant chains

Many thanks!

CHEOPS REVEALS UNIQUE PLANETARY SYSTEM TOI-178

Six planets known to be orbiting host star

Outer five planets are locked in rhythmic dance, with planets aligning every few orbits

Orbital period predicted and confirmed by Cheops

#CHEOPS

TOI-178 is a golden target for the study of formation and evolution of planetary systems.

TOI-178 - credit : ESA

A. Leleu, Y. Alibert, N. Hara, M. Hooton, T. Wilson et al (2021)